

Norwegian University of Science and Technology

## Business Transitions: A Path to Sustainability

Annik Magerholm Fet, Professor Emerita NTNU Department of International Business Annik Magerholm Fet Editor

Business Transitions: A Path to Sustainability

The CapSEM Model

OPEN ACCE

Business Transitions: A Path to Sustainability: The CapSEM Model

Springer

## The history of «Sustainability»









Epoch 1: 1850 -1960: Industrial growth Epoch 2: 1960 -1970: Environmental advocates Epoch 3: 1970 – 2000: Regulation and new practices Epoch 4: 2000 – : Business involvement

## The Cean outside Aaltesund and the Fjords

Husøya Gronværet Sæterøy Harøva Hestøya Erkna Grasøyan /igra Multistråle Beregn Filtre Vinkler Stoy Senter Backscatter

Fortsett slik 🚦 Hopp tilbake

100 Kartnavn CD-oversikt ChartWorld-versjoner Kartvalg ChartWorld Bakgrunn

O Pil Mer

Dybdekoter

Stromkart

50

The Oceans – Future living labs

A Clean and Healthy Ocean is of most importance for our future

This requires

- Research collaborations
- Collaborating with the public sector
- Collaboration with the industries





# A circular ocean



Applying information, knowledge and ideas gathered from across the region and beyond, the Circular Ocean Project will act as a catalyst to empower communities to develop robust business opportunities that are environmentally sustainable and enhance income generation in these regions.





## Session: Recycling of fishnets



ente Lund Jakobsen, Director Mørenot Aquaculture ASB



## Session World Café – discussing methodologies to increase circularity





## Connecting industry – Reusing material from aquaculture cages

RESPONSIBLE

CONSUMPTION And production

- Brackets and walk-ways from Plasto
- Pipes from Helgeland Plast (AKVA group)
- Same material (HDPE)





Norwegian University of Science and Technology

#### **Marine Pollution**

- PlastOPol (IIR, IIF)
- SlepeROV (IIR)

#### **Circular Economy and Business Models**

NTNU

• BH4S (IIF)

#### **Circular value chains for plastics**

- Blue Circular Economy (BCE) (IIF)
- Circular Ocean (IIF)
- Sweet Spots (IIF, IHB, IIR)
- AOPW (led from Ålesund from 2022)

New joint, interdisciplinary initiatives:

Examples of circularity projects at

9 PhDs in Sweet Spots
and MAPLE
1 PhD in
Marine Plastic
Pollution in the Circular
Economy

## People from my research groups over time







## CapSEM Model

Annik Magerholm Fet Editor

Business Transitions: A Path to **Sustainability** The CapSEM Model Non THE 🗋 Springer **OPEN ACCES** 



inability:

## **Circularity at different levels**

#### Systemising methodologies: why use the CapSEM Model?

- Increase in regulations which business has to deal with
- The CapSEM Model provides the opportunity to systematise methodologies that allow companies to compare results
- The CapSEM model aims at streamlining the implementation of a circularity over 4 levels

## The CapSEM Model



Increasing performance scope

o Sustainability:

## Level 1: Input – output analyses of industrial processes



## **Circularity options level 1**

Cleaner Production strategies appear on the first level of application of the CapSEM Model

Benefits include:

- Good housekeeping
- Driven by economic benefits
- Foundation for other levels through its Input- Output approach

Examples of circularity level 1

- Waste treatment > recycling and recovery of materials
- Use of excess energy in other production-lines
- Substitution of hazardous materials -> more materials can be recycled

NTNU | Norwegian University of Science and Technology

## The CapSEM Model



o Sustainability:

Level 2: Product focus and life cycle assessment tools





#### Image: Norwegian University of Science and Technology

### Life Cycle Inventory



NTNU | Norwegian University of Science and Technology

4

## Circularity at level 2

Level 2 of the Model addresses products and value chains It encompasses:

- LCA methodology helps to find hot-spots with potential for reduction of materials, e.g. by recyling options both upstream and downstream in the supply chain.
- Design for Environment (or DfE), and Environmental Product Declaration (EPDs) are usefull for finding opportunities for circularity of products

#### From Ch 5: Looking Beyond the Factory Gates:

Life Cycle Assessment Supply Chain Management Design for Environment





#### NTNU | Norwegian University of Science and Technology



#### epd-norge.no

#### ENVIRONMENTAL PRODUCT DECLARATION

| Owner of the declaration     | Nordic Comfort Products AS   |
|------------------------------|------------------------------|
| Program holder and publisher | The Norwegian EPD Foundation |
| Declaration number           | NEPD-1885-804-EN             |
| Issue date                   | 03.10.2019                   |
| Valid to                     | 03.10.2024                   |

#### S-1500





The S-1500 chair references the textures, colors and crafts of it's origin in the North of Norway. The chair-shell is made from 100% recycled plastic from the fish farming industry in the north of Norway, and the chair's subframe is obtained by partially recycled Norwegian steel. The chair is a redesign of Bendt Winge's classic R-48 chair. Also prodused by NCP.

| Key environmental indicators | Unit               | Cradle to Gate<br>A1-A3 |  |
|------------------------------|--------------------|-------------------------|--|
| Global warming               | kg CO <sub>2</sub> | 9                       |  |
| Total energy use             | MJ                 | 109                     |  |
| Amount of recycled materials | %                  | 48 %                    |  |

| Materials     |      |      | Recycled r<br>manufactur | material in<br>red product | Recyclable<br>end of pr | material at<br>oduct life |
|---------------|------|------|--------------------------|----------------------------|-------------------------|---------------------------|
| Unit          | kg   | %    | %                        | kg                         | %                       | kg                        |
| Steel         | 2.70 | 63 % | 20 %                     | 0.54                       | 100 %                   | 2.70                      |
| Polypropylene | 1,52 | 36 % | 100 %                    | 1,52                       | 100 %                   | 1,52                      |
| Polyethylene  | 0,05 | 1 %  | 0 %                      | 0,00                       | 100 %                   | 0,05                      |
| Total         | 4,27 |      | 48 %                     |                            | 100 %                   |                           |

#### LCA: Scenarios and additional technical information

|           | Material<br>recovery | Energy<br>recovery | Disposal |
|-----------|----------------------|--------------------|----------|
| Aluminium | 70,1 %               | 0,0 %              | 30 %     |
| Steel     | 70,1 %               | 0,0 %              | 30 %     |
| Plastic   | 64,3 %               | 30,8 %             | 5 %      |
| Cardboard | 94,5 %               | 5,5 %              | 0 %      |



#### **NTTNU** | Norwegian University of Science and Technology

## The CapSEM Model

Sustainability:



## Level 3: Strategic Implementation in the organisation



- A toolbox for strategic decission support and greening of value chains
- Business Models for Sustainability BMfS



## Circularity level 3: our main focus

The Model addresses circularity at an organisational and management level here, for example:

- Management systems for implementation circularity
- Standards
- Criteria for purchasing
- Procedures for Implemention
- Networking

This drives/encourages businesses towards organisational change, to introduce

Business models for circularity

And be part of

Industrial symbiosis

INTIC Norwegian University of Science and Technology

## Business models for circularity



NTTNU | Norwegian University of Science and Technology

#### Key elements in environmental



#### We need a common language



ISO/DIS 59004 Circular Economy – Terminology, Principles and Guidance for Implementation ISO/DIS 59010 Circular Economy – Guidance on the transition of business models and value networks ISO/DIS 59020 Circular Economy – Measuring and assessing circularity

NTNU | Norwegian University of Science and Technology

#### **The Green Deal**



#### NTNU | Norwegian University of Science and Technology

## Business Models for Sustainability



### www.bh4s.no

- Business models for sustainability
- Toolbox for implementing the SDGs
- Reporting and communication



(Geissdoerfer, Vladimirova, & Evans, 2018)

Image: Science and Technology

## The CapSEM Model



mereasm



## **Circularity level 4**

#### Level 4 addresses circularity at the societal level

The right infrastructure is a pre-requisite for circularity at a larger/societal level

The feedback coming from Levels 1 and 2 will also help with continuous improvement for both Level 3 and 4

There are many opportunities and developments at this Level, e.g. partnership

Industrial symbioses (waste/by-products - raw materials) is one example:

- Industrial parks (localised companies share production systems)
- Industrial parks (built environment to faciliate sharing)
- Industrial parks (social inclusion, social economy organistions/ training and work opportunities)

NTNU | Norwegian University of Science and Technology

## The way forward – Long term transition to sustainability

Annik Magerholm Fet Editor

Business Transitions: A Path to Sustainability

The CapSEM Model

**OPEN ACCESS** 

Five advices:

1. **Systemic changes** - be a "game-changer" in terms of consumption and circularity

2. Focus on interdisciplinarity – understand the complexity inherent in circular systems

3. "Net positive management" – regenerative measures that help develop the environment, not just protect against destruction

4. **Digitalization for sustainability** - increased use of "IoT" and digital solutions for less resource use and better circularity

5. **Responsibility in the values chain** - create cooperation between the actors for better system understanding

Thank you for listening Annik.Fet @ntnu.no

Business Transitions: A Path to Sustainability: The CapSEM Model | SpringerLink

Springer